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Abstract

The problem of an elliptic inclusion embedded in an infinite matrix subjected to a uniform magnetic induction is
considered in this paper. Basing upon the two-dimensional magnetoelastic formulation, the technique of conformal
mapping, and the method of analytical continuation, a general solution of magnetic field quantities and the mag-
netoelastic stresses are obtained for both the matrix and the inclusion. Comparison is made with several special cases of
which the analytical solutions can be found in the literature, which shows that the solutions presented here are general
and exact. Moreover, the magnetoelastic stresses at the interface between the inclusion and the matrix are presented
with figures.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is known that there are some defects in the form of cracks, voids, inclusions, etc., existing in most
engineering materials. In view of its flexibility to cover a wide variety of particular cases, such as line or
circular inclusions, the elliptic inhomogeneity problems have received considerable interest. Early work by
Hardiman (1954) and Eshelby (1957) showed that a constant stress state within the elliptic inclusion is
induced by a uniform stress applied at infinity. By the use of conformal mapping and the Laurent series
expansion of complex functions, Gong and Meguid (1992) investigated the elliptical inclusion problem
under the action of antiplane shear.

For the defects in a ferromagnetic solid subjected to magnetic loading, many earlier investigators have
devoted to the crack problems. Based upon the linear theory of Pao and Yeh (1973) and the technique of
integral transformation, Shindo (1977) and Shindo et al. (1999) derived the magnetoelastic fields for the
soft ferromagnetic material containing a line crack. Lin and Yeh (2002) solved the crack problem in plane
magnetoelasticity by the use of complex variable method. The J-integrals around the cracks within
soft ferromagnets (Sabir and Maugin, 1996) and hard ferromagnets (Fomethe and Maugin, 1998) were
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derived on the basis of the rotationally invariant quasi-magnetostatic theory. On the magnetoelastic
problem with curvilinear boundary, van de Ven (1984) used Mathieu functions to study the magnetic
buckling of a beam of elliptic cross-section under transverse magnetic induction. Although the elastic
inclusion problems (summarized by Mura, 1988) and the crack problems in plane magnetoelasticity were
investigated extensively, the corresponding magnetoelastic problem of elliptic inclusion is still an inte-
resting and new study of research due to the widespread use of the application of magnetoelasticity in
various fields.

The objective of this paper is to find the magnetoelastic fields induced by the applied magnetic fields on
an infinite matrix containing an elliptic elastic inclusion. Since the formulation of complex variable
method in elasticity (Muskhelishvili, 1953; England, 1971) and magnetoelasticity (Lin and Yeh, 2002) is
compact, it is adopted in the following work. We introduce the complex potential functions of magnetic
and magnetoelastic fields which satisfy the corresponding governing equations. By the method of ana-
lytical continuation together with the proper boundary conditions, the magnetic and the magnetoelastic
functions can be solved explicitly. It is worthy to mention that we introduce a pertinent function to
convert the boundary condition into a form without the complex conjugate of the space variables. The
present solution which satisfies both the governing equations and the boundary conditions simulta-
neously is exact. Due to that the general solutions have not been found in the literature, the results of
several special cases, such as elliptic hole, elliptic rigid inclusion and air matrix, etc., are also provided
and compared with the existing analytical solutions. Hence the exactness of the present solutions can be
guaranteed.

2. Formulations of magnetic fields

A soft ferromagnetic medium containing an elliptical inhomogeneity under a remote uniform magnetic
induction is considered in the present study (see Fig. 1). The regions which are occupied by the matrix and
the inclusion are denoted by S; and S, respectively. Basing on the two-dimensional theory of magneto-
elasticity, the magnetic fields can be expressed as (Lin and Yeh, 2002)

B, +iB, = pop,(H, +iH,) = pop. ' (2) (1)
where
h(z) = o(x,y) +iy(x,») (2)

is a magnetic potential function of the complex variable z (= x + iy), prime indicates differentiation with
respect to z and overhead bar denotes complex conjugate. The symbols B; and H, are magnetic induction
(or magnetic flux density) and magnetic intensity, y, = 4n x 1077 N/A? is a universal constant and g, is the
relative magnetic permeability.
Let us introduce the transformation function
a+b a—>b,_
=+t (3)
which will map the region outside the elliptic inclusion in z-plane onto the exterior of the circle |{| = 1 in the
transformed {-plane and the region inside the elliptic inclusion onto the interior of annular region between
the unit circle and a circle of radius ,/p. Here p is related to the major semi-axis ¢ and minor semi-axis b of
the elliptic inclusion in z-plane by

_a—b
T a+b

z

p (4)
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Fig. 1. The far field stresses and magnetic induction on a matrix with an elliptic inclusion.

It is observed that the radius /p is less than 1. The transformation in Eq. (3) is single valued in the exterior
region of inclusion but it becomes double valued within the elliptic inclusion. To remedy the discontinuity,
the following restriction should be satisfied for the relevant functions (Gong and Meguid, 1992)

p(v/po) =p(V/p/o) (5)
where ¢ = e/’

In this study, a remote uniform magnetic induction is applied on a soft ferromagnetic body with an

elliptic inclusion. Using Eq. (4) and the technique of conformal mapping, the complex potential function

hi({) in S| can be written as

h(0) =h (0 +h(() for eS8 (6)
where
b —-b
ho(C)—gz—g<a; C+a2 C‘l) (7)
with
Boe—ia
_ 8
&7 ot (8)

indicates the magnetic field of a remote uniform magnetic induction Bye (= By, — iBy,) which is directed
at an angle o with respect to the x-axis. Notice that /;({) corresponds to the magnetic function #;(z) in the
transformed (-plane.

Since the magnetic function 4,({) is holomorphic in the annular area S, of the mapped (-plane, it can be
represented by a Taylor’s expansion as
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In view of Eq. (9), we may neglect the term e, which has no contribution on the magnetic field. Applying
Eq. (5), the coefficient ¢; in Eq. (9) satisfies
e_ = pkek (10)

where p is defined in Eq. (4). In the present work, the inclusion and the matrix are assumed to be perfectly
bonded along their interface, the boundary conditions of magnetic fields can be expressed mathematically
as (Lin and Yeh, 2002)

@1 =y, HoluV1 = Holy, along the interface { = ¢ = ¢ (11)
where
@, = Q) +h0))/2, v, = [(0) — R (0)]/(2i) (12)

can be obtained from Eq. (2). Employing Eqgs. (6)—(10) and (12), the continuity conditions of magnetic fields
in Eq. (11) lead to

(o) + (2

_ (1
:—h>'F — — o
(G> (g +2p)
i B a+b B o] o o] -
Holsy [h (0) —(g—gp)——0 1} +Moﬂr2<zek0 = peo k)
k=1 k=1
_ (1 +b . "~
= HoMri [h (a> (g —20) 2> 5 }+Hoﬂrz<zek‘7 Pe ) (14)

Basing on the properties of holomorphic functions and applying the method of analytical continuation, it
is convenient to introduce a new set of complex functions #,(z) which are holomorphic in the entire domain

as
(£ 1 00
= - fer Tt
[’12(@’)] lﬂol@z] ;P

”bf for || > 1 (15)

Z eka zx: p"eka’k
k=1
a + Z era* + i predt (13)
k=1 k=1

1 -1 ] [ ()
Hottey Moty | | Doie al™

+

1 1 1 [g
—Holer Mol gp

['h(()] [ 1 | 1 P e
= 1
n>(0) Hollyy oMy h <Z>

PO |
Hollyp  —Holyy gp

and
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On the basis of Liouville’s theorem, the complex functions 7, ({) and #,({) that are holomorphic in the entire
plane including the points at infinity are constant functions. Without loss of generality, we take 1,({) = 0
(j = 1,2). Thus, the following solution can be obtained from Egs. (15) and (16) as

. My — Hpp at+b 2y Nk ek
h C=<7g—gp> O+ prel 17
( ) iy + 23%) 2 My + %) ; ¢ ( )
- o = Myl o —ko vk
gla+b); + 22BN pra 18
Z :url + ) ( Hey + ) k=1 ¢ ( )

The coefficients e, can be found by comparing the coefficients of (* in Eq. (18). This gives

s st + 1)@+ ) + (s — )@ = )]
e = 5 s . =0 fork#1,-1 (19)
(ﬂr2+/1r1) - (:urZ_:url) P

Inserting Eqs. (17) and (19) into (6) and (9) yields the complex potential #;({) in S; (j = 1,2) as

a +b _
hi(¢) = g+ pC! (20)
h(0) = e+ per (! (21)
where
Uy — Uy @ + b — 2:ur2
= —+ e 22
ﬁ He + %) 2 & ey + :ur2p 1 ( )

For the special case of the homogeneous magnetic problem (i.e. u,, = y,,), it is easy to verify that
() =m() =gz (23)
Applying Eq. (3), we have

EVEE@) i E @) o
a—>b

a+b ’

Here the sign convention in Eq. (24) is chosen to assure the mapping between the points of |z| > 1 and
> 1.
In order to express the magnetic potential function in z-plane, we introduce the following transformation

n,
e =0 =

Thus, the magnetic fields in both the matrix and the inclusion can be expressed in terms of z via the use of
Egs. (1), (20), (21), (24) and (25). It follows

j=1.2 (25)

. 1 , g, B g B z
H+iH,), = —— (B, +iB,), = h(2) = | &+ g_ 5
( X+1 ))l M(),ur]( + ))l hl(z) <2+ab>+<2 a—b 22—(512—172) ( 6)
. . 2
(Hy +iH,), = Loty (Bx +1By), = hy(z) = atb (27)

which reveals that the magnetic fields in S, is uniform.
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3. Magnetoelastic stresses induced by circular inclusion

Basing on the complex formulation of the plane magnetoelasticity (Lin and Yeh, 2002), the resultant
force acting on the material to the left of the arbitrary arc 4B can be written as

B B
(7 c (7 . _— 'L[ —_—
140 = =i 0,6) + D + 0, + o, [ KR~ 1) [ A
j=1.2 (28)
where the quantities with superscript or subscript j will be referred to S; (j = 1,2), i.e. the magnetic sus-

ceptibility y; (= g,; — 1) and the complex potential functions ¢;(z) and y,(z) of stresses are defined in the
corresponding region S;. The displacements can be represented as

N 1 — G; — .
“)9) + 1“}(/) = 2_Gj |:K/¢j(z) - fo’}(z) - %(Z) - (/11_4_—]2@)#0%,-}1/(2)}1}(2) j=12 (29)
where the symbols 4; and G, are Laméys constants and «; = (4, + 3G;)/(4; + G;) = 3—4v; for plane strain
(England, 1971). The symbol v; denotes the Poisson’s ratio in S;. It is remarked that those terms related to

body force are omitted in Eqgs. (28) and (29). The stress components take the form

T M
o) MDY — [+ () () ()
(9440) = (@ +n7) + (2 +47)

(- - (-35) (-2
where

(1 +47) = 2[00+ 56 + @, (10 +)" = w2,

(49~ = 82) + 5,6 + [6]) + W) + 0, [ - BRG], v

N \M 1
() =it0) " = w0 |2 W (E) — B G|

In Eq. (30), the stress components with superscript T indicate the total stresses which are the sum of the
Maxwell stresses with superscript M and the magnetoelastic stresses. The Maxwell stresses which are not
related to the deformation are defined artificially just for the sake of convenience. Namely, the magneto-
elastic stresses rather than the total stresses are physically practical in spite of that the total stresses are
continuous across the boundary (Pao and Yeh, 1973).

By proper rearrangement, Egs. (28) and (29) lead to

f=Re[AD((, () +p((,0)], " =Re[AD((,{) +p"((, )] (32)

u=Re[L®((, () +q(( )], u =Re[L'®((, () +q7((, )] (33)
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S T e e ey .
N i A B
en 3] =[] wen-[ 3] wen-[%]
with
o0 =260 +u,6) = (L ) B, =12
p=to [ MEREE 5 (0 + ) [ HEREE: o

P =t [ @R~ (s + 1) [ Bz

_ HoX1 T «_ HoXo T
q= 2(11 +2G1)hl(z)hl(z)7 q 2(12+2G2) hz(Z)hz(Z)

The surface tractions and the displacements should be continuous across the perfectly bonded interface
between the inclusion and the matrix. i.e.
f=1f, u=u" along the interface { = ¢ = ¢" (36)

)

To solve the present problem, we introduce the function

_ |90 ey — | #2(0)
vo= |08 ro-[28) (37)
where
a+b a-—>b ‘i’;(() .
50 = (212 Do, =12 (39)
Applying Eq. (3) and using the relation ¢ = 1/¢ along the interface, it is easy to verify that
@;(0,6) =v;(0), @(0,6)=¥(0), D(0,6)="¥"(0) (39)

This means that the boundary conditions can now be converted into a form involving ¢ only. Thus, the
problem becomes to determine the complex functions ¥({) and ¥*({) which are expressed in terms of the
space variable { rather than to solve the complex functions ®(¢,{) and ®* (¢, {) which are related to both {
and (. In order to satisfy the holomorphic requirement on S; and S,, the functions ¥({) and ¥*({) must
take the form

PO =rQ)+s, PO =) el (40)

k=—00
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where
W_; = pk(,l)k (41 )

The vector s in Eq. (40) can be solved from the limiting values of stress functions ¢} ({) and /| ({) at infinity
as

00 =52 g (G- 4 )8 +o(3) forl > )
00 =50 =gy (51 ) 8~ s, — 83)] +0( 1) forld > 1 @)
Bo\2Z iy ¢
where
r—%(a1 + 03 )+i2f‘+°”:7 r=-Lr o) (44)
with
o™ = Im(dD/dz) (45)

The symbols ©* and (o{° + i63°) denote the rotation and the applied principal stresses at infinity. Sub-
stituting Egs. (38), (42) and (43) into (37) and taking |{| > 1 renders

S
s = LJ (46)
where
a+b 1L /1 2 2
= I'+—|-—5% )(B B, 47
e 2 [ +2/10 <4 31)( L Oy) “7)
a_b 1 a+b 1 1 ﬂ1+X1 2 . 0
= — = 32 B I' —— | = —2—2 | (B5. — 2iBy.By, — B;.
* 2 [r+2#0 <4 rl)( - )} 2 { 2, <2 1 (Ba. o Oy)
(43)

By applying ¢ = 1/o together with Eqgs. (20), (21), (32)-(35), (37) and (39), the continuity conditions of
Eq. (36) result in

Ar(c) + Asc™' — i — Aipkmka*k + f:vko*k
=1 -
——Ar(i) —Asa+Akaak+Aipk kaa (49)
k=1 k=1 k=

Lr(o) +Lso ' — L Z o - L7 Z prape ™ + Z wio "
5= ) 5=

_ 1 00 . 00 00
— —Lf<—> —Lso + LY oo + L) plagd' —> wid (50)
o k=1 k=1 k=1
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where
(v + ) i(we +wy)
= = 1
Vi #O{ (Uk —U;:) y Wk Ho (Wk _Wz) (5 )
with
no{ 4 [26(pg =25 — (a+ b)gg| + L2 [4B — (a — b)E] + 55 [27001 — (o + 12)p@1 | | for k=1
/Lopk”/ {2/1 (l— )g 2ﬁ](%_%> (Hr]+/l)|: 4ﬁg+g (a_b)]} fork:375777
for k #1,3,5,...
a+b 4mﬁg )—(uﬂ+xl)(a+b)2g2—8126151p+4(ur2+b)6ﬂ for k=1
for k # 1
2
HoXi 2 _ 2 X2€1
2pg(a—b) —4pB| —— L2 fork=1
8(/1 + 26, (a—l—b)[ sgla+ )" +2pg(a—b) ~ 4] 30at26)@+b) ok
Mol - 2p _
A1+2G1 —-b)— 2ﬁ]<p a+b)’0 for k=3,5,7,...
for k #1,3,5,...
-1 1€
for k = 1
wi={ M40 +26) T 20h +2G) @+ by | "
0 for k # 1 (
52)

Similar to the previous approach, a new set of complex functions &({) can be introduced on the basis of
analytical continuation as

- [t Hllse]- 25|
for || > 1 and _
&) = [I‘f‘ :%} Z?;kck + [%}gp"@kd‘— [ﬂsé—gm{]ék (54)

for |{| < 1. By Liouville’s theorem, we have &({) as a constant function. However, this constant function
corresponds to a rigid motion which can be neglected (i.e. £({) = 0). Putting this result into Egs. (53) and
(54) and using the following formulation,

(i

el &

|
A —A _ Ea Eb
[L —E"] - {E Ed] (55)
where
. [ iGY, G, } B { 2G,Gy9, 2iGleq9a}
“ —iK2G1’19b —K2G1’l9b ’ b —2G1G219b 2iG1G219b ’
1G, ¥ G —-2G1Gy¥,  21G1GLY
Ec[.lzb 2b:| Ed|: 1G2Vp %121)] (56)
—1K1G2’l9a Kleﬁa 2G1 G219a 21G1 Gz'lga
with
1 1
’L9a b — (57)

- 2(G1 + K]Gz) ’ 2(G2 + KQGI)
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we can obtain

r({) = (E,A+ EL7) Z Pl — (E,A+ E,L)s Z(Eavk +Eyw) " (58)
=1 =1
Z (Dkék A + EdL Z P (!)ké/ — E A + EdL) é’ Z(Evk + Edwk)Ck (59)
=1 k=1 =0
Solving for Eq. (59) gives
o = I - (EA+EL)(EA+EL)p* " [(EA + EL)p'y, + ] (60)
where I is an 2 x 2 identity matrix and y, are defined as
Y. [(E A+ EdL)S(Skl ( Vi + Edwk)] for k = l, 3, 5, ce (61)

and the other y,’s vanish. It is noted that the Kronecker delta d;; equals zero except for £ = 1. Using Eqgs.
(34), (56), (57) and (60), the coefficients @, (for £ > 0) can be expressed in an explicit form as
2G
= : i (62)
1— 4(K2G1 — K1G2>(G1 — Gz)ﬂa’lslbpy( Wy

(O

where
wp = [2(Gy — G2) k19405 0"Sh + 4] 001 — 1o[2(Gr — G2)D 950" (110 + 2iGiw) — 9, (v — 2iGiwy)],
U)i = [2(K2G1 - KIG2)'l9a19bpk§a + Klﬁasb}ém + ,uo[z(KzGl — K]Gz)i?aﬂbpk(f)k + 21G1Wk) — 190(1611); — 21G1W;;)}
(63)

Having the results of r({) and o and using Eqs. (37), (38) and (40), the functions ¢;({) and ,({) can now
be solved and the whole magnetoelastic fields can be determined from Eqgs. (26), (27) and (29)—(31). In order
to focus on the effect of magnetic loading, the far field stresses ¢7° and 65° whose effect were well studied are
assumed to be zero in the following illustrations.

For an elliptic inclusion in z-plane, it is pertinent to express the stress components in terms of the co-
ordinates x' and )’ which are tangent and normal to the boundary, respectively. The stress components are
transformed from those on the coordinate system (x,y) as

by cos? d, sin® &, 2cos d, sin J, tex
tyy | = sin® §, cos? §, —2cosd,sind, | |ty (64)
Loy —cosd,sind, cosd,sind, cos’d, —sin’d, ty

where J, is the angle between the x-axis and x'-axis as shown in Fig. 1. Since the solutions of the stress
functions are complicated, it is almost impossible to obtain the maximum interfacial stress as an explicit
function of the material properties and the geometric data. We can conclude from Egs. (26), (27), (31), (37),
(40), (58), (62) and (63) that the magnetoelastic stresses are related to the incident angle of magnetic in-
duction, the ratios G,/G, and p,,/u,, of the material properties and the ellipticity denoted by b/a of the
inclusion. Furthermore, the relevant material properties of the matrix and the inclusion are assumed to be
vi=v,=0.3 and p,; =1000 in the following numerical examples. The condition v; = 0.3 renders
2;/G; = 1.8. Figs. 2 and 3 display the variation of the interfacial magnetoelastic stresses on the incident
angle of the applied magnetic induction with u,,/u,, = G,/G; =0.5 and different b/a ratios. All the stresses
in the figures of the present study are presented in a dimensionless form. In these figures, ¢y, ¢y, and t.,
denotes the tangential, normal and shear magnetoelastic stresses acting on the matrix along the interface. It
is noted that the reference quantity B3/2u, = 400,000 N/m?* (58 psi) will be induced by a typical magnetic
induction By = 1 T (tesla). In order to clarify the character of the interfacial stresses, the extreme values of
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Fig. 2. Interfacial stresses on the matrix subjected to a remote uniform magnetic induction under different incident angle with
lurZ/lurl = GZ/GI = 055 b/d =0.5: (a) toy, (b) ty’v’~ (C) Loy

the magnetoelastic stress on each curve of Figs. 2 and 3 and their corresponding angle ¢ are presented in
Tables 1 and 2, respectively. From Figs. 2 and 3, we can find that all the distribution curves of the mag-
netoelastic stress have a period 180° with the angle . Therefore, the adding of 180° to each angle ¢ given in
Tables 1 and 2 will lead to the same extreme value of the magnetoelastic stress. The extreme values of stress
distribution tend to occur at the end of the major axis for both the tangential and the normal magneto-
elastic stresses and become sharper with decreasing b/a. It is observed that the tangential stresses will
increase with the incident angle o but the normal stresses decrease with increasing «. This result reveals that
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Fig. 3. Interfacial stresses on the matrix subjected to a remote uniform magnetic induction under different incident angle with
AurZ/Aurl = GQ/G] =0.5, b/a =0.1: (a) Ly, (b) tyy, (C) Loy .

the component B, of magnetic induction is the source of stress concentration and will cause singularity of
the magnetoelastic stress when the inclusion approaches to a line inclusion. In Fig. 3(c), the extreme values
(maximum or minimum) of the shear magnetoelastic stress for « = 0° and 90° appear in the same angle §.
For a point E located on the positive real axis, the dependence of the interfacial stress on b/a under different
G,/G, is shown in Fig. 4. The value of yu,,/p,, is taken as 0.5 and o equals 45° in this figure. It is remarked
that the magnetoelastic stresses will increase with increasing b/a and G,/G,. Notice that the total stresses
rather than the magnetoelastic stresses are continuous across the interface between the inclusion and the
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The extreme values and circumferential angle of the magnetoelastic stresses (b/a = 0.5)

1559

Extreme value

tev | (Bg/24)

toy [ (B3/2u)

tey [ (Bg/24)

Max (0) Min () Max () Min (9) Max (J) Min (9)
o= 0° 0.23 (90°) —-0.10 (0°) 0.35 (0°) —0.11 (90°) 0.23 (14°) —-0.23 (166°)
o= 30° 0.39 (165°) —-0.11 (13°) 0.33 (99 —-0.16 (160°) 0.19 (50°) —-0.31 (177°)
o = 45° 0.52 (170°) —-0.10 (20°) 0.31 (15°) —-0.22 (168°) 0.19 (100°) —-0.31 (0°)

o = 60° 0.65 (174°) —0.08 (30°) 0.29 (28°) —-0.22 (172°) 0.22 (140°) —-0.34 (5°)
o= 90° 0.77 (0°) —0.08 (90°) 0.27 (90°) —-0.32 (0°) 0.30 (166°) —-0.30 (14°)
Table 2
The extreme values and circumferential angle of the magnetoelastic stresses (b/a = 0.1)
Extreme value lx’x’/(B(z)/zﬂO) t_wy’/(BS/Z:u(]) tx’_v’ /(B(Z)/ZMO)

Max () Min (9) Max (9) Min (9) Max () Min (9)
o=0° 0.12 (90°) —-0.18 (0°) 0.87 (0°) —0.05 (90°) 0.40 (1°) —0.40 (179°)
o= 30° 0.89 (0°) -0.23 (3°) 0.30 (0°) -0.17 (177°) 0.16 (6°) —-0.99 (0°)

o =45° 1.96 (0°) —-0.28 (3°) 0.34 (3°) —-0.27 (0°) 0.19 (175°) —-1.15 (0°)
o= 60° 3.03 (0°) —-0.22 (3°) 0.37 (3°) —-0.85 (0°) 0.33 (178°) —-0.99 (0°)
o = 90° 4.10 (0°) —-0.01 (90°) 0.28 (90°) —-1.42 (0°) 0.73 (177°) -0.73 (1°)

matrix. From Egs. (19), (22), (26), (27), (31), (37), (40), (58), (62) and (63), we find that y,, > 1 will cause
insignificant Maxwell stresses. Therefore, the magnetoelastic stresses are almost continuous across the
boundary for the present illustrative examples. In other words, the magnetoelastic stresses shown in Figs.
2-4 also can be regarded as the corresponding ones on the inclusion.

4. Special cases
4.1. Holes

When the inclusion is a traction free hole (1, = G, =0, u,, = 1) within the soft ferromagnetic matrix
(tt,; > 1), the mapping function in Eq. (3) will map the interior of an elliptic hole onto a circular hole.
Notice that 4,({) is holomorphic in S, which contains the origin. Therefore, the potential functions of
magnetic fields induced by a uniform magnetic induction are

(€)% 2 (B i)+ (B 80 (65)
() 200 (¢ i) (66

Hott (1 — p?)
Thus the magnetic fields can be obtained from Egs. (1) and (25) as

B()xb — iBoya)Z

. 1 . 1 . (
(H, + lHy)l =—— (B + 1By)l (Boa — 1BOyb) - 2 (@ -b) (67)

Holey - Holyy (a - b)
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(a)
- G2/Gi=0.1
3 G2/G1=0.5
o
S G2Gi=1.0
g G/G(=5.0
3 G2/Gi=10.0
R
& >
0.8 1.0
(b)
A % % % 4
y —— G2/G,=0.1

—6— Gy)/G,=0.5

B —A&— Gy)G=1.0

E X G)Gi=5.0
—+— G)G=10.0

tyy/(Bo*1210)

0.4 06 0.8 1.0
bla
- (c)
r G2/G=0.1
s G2/G1=0.5
N - Go/Gi=1.0
& [ GA/G1=5.0
:":‘ B G2/G,=10.0
.40 C 1 | 1 | 1 | 1 | 1
0.0 0.2 0.4 0.6 0.8 1.0

bla

Fig. 4. Interfacial stresses at the point £ (6 = 0°) on the matrix subjected to a remote uniform magnetic induction of incident angle
o= 45° with p, /iy = 0.5: (a) tew, (b) Ly, (C) Loy

. 1 . (Boxb + iBoya) ( 11 )
H +1H,),=—B,+1B,),x ——| —+— 68
(ot i)y = (B +iBy), = o DBV (68)

The comparison between Eqgs. (67) and (68) indicates that the magnetic induction (B, +1B,), in S, is much
smaller than (B, +1B,), in S;. Such results guarantee the assumption that the boundary of the hole (or
crack) within a soft ferromagnetic medium can be viewed as an insulated surface for magnetic fields and
hence the magnetic fields inside the hole is negligible (Lin and Yeh, 2002; Lin and Lin, 2002a).



C.-B. Lin | International Journal of Solids and Structures 40 (2003) 15471565 1561

Since the inclusion is now composed of air, all the mechanical potential functions in S, vanish, i.e.
¢, (0) = ,() = 0. Referring to the previous derivations, the boundary condition of f = 0 for a traction free
hole leads to

Ar(o) + Aso ' + :Czlvkok = —Af(é) — Aso — 2 v,* (69)
By applying the method of analytical continuation, Eq. (69) yields
r(()=—-A" (Asé_l + ivﬁf) ~ —A'AS(! (70)
k=1
where the last approximation is deduced from the estimation (vy,41/5¢) ~ (Vaus1/55) ~ O(1/p,) < 1.
DO = sl =50 (O = sl —s - g’gfpgi (s 45,7 (1)

If one let the minor semi-axis b approach to zero, the elliptic hole becomes a crack of length 2a. We can
obtain the magnetic fields and the corresponding magnetoelastic potential functions by taking b = 0 in Egs.
(17) and (19). The results are

hi(0) & —— [(Boy — iBoy){ + (Box +iBoy)( ] (72)
IuO:url
() ~ H;ﬂ (Bos — iBoy){ (73)

Then the magnetic fields in S} and S, can be expressed as

By, z

1 1
H. +1iH,), = — (B, +1B,), ~ —— | Boy + —— 74
(i +iH,), ﬂoﬂrl( 1By, Mol ot z22 — g2 74)
. 1 . (Box +1Byy) z
L LiH,), = — (B, +iB,), ~ o) | 1 75
(i + 18, )2 Ho (B 1B )2 Holry 2 —a? * ( )
and
e o L+ ol
$ () =5l =50, Y () = sl =50 — ] (sl +5C7) (76)

The coefficients s, and s;, can be determined from Egs. (47) and (48) by letting » = 0. For a point departed
from the crack tip with a small distance along the x-axis, the stress components ¢, — it,, on it can be ob-
tained by substituting Eqs. (74) and (76) into (31) and taking y = 0, |x| > a, (i.e. z =z = x). This gives
1 z B

t,, — ity, = — (B2, — iByB +O< 0 ) 77

» y 2#0 ( 0y 0. O,V) \/22——02 Loyt ( )
where Bj = B, + Bj, and p,; > 1. Notice that those terms with singularity order higher than 1/7'/* are
omitted here because they will decay vary rapidly with the distance away from the crack tips (Lin and Yeh,
2002). The stress intensity factors are given as
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(k} — ikH) = lim +/ 2(2 — (1) (tyy — itxy) ~ g (Béy — iB()xB()y) (78)
0

which is identical to the results given by Lin and Yeh (2002).
4.2. Rigid inclusion
When the inclusion is a magnetically insulated and absolutely rigid body, the magnetic function in Egs.

(65) and (66) and the magnetic fields in Egs. (67) and (68) are also valid. The boundary condition u =0
renders

Lr(c) + Lso ' + kiol:v_vkak = —Er(é) — Lso — gwmk (79)
By applying the method of analytical continuation, Eq. (79) leads to
r({) = -L! <E§(1 + f:wkg‘) ~ L 'Ls(! (80)
=1
The last approximation is derived from the estimation similar to that given in Eq. (70).
$1(0) = 5l +%C“, Yi(0) = sl + misl — ’ffpgj (sac - ZC”) (81)

Now the elliptic rigid inclusion becomes a rigid line inclusion of length 2a (i.e. b = 0), we can obtain the
stresses t,, — i, ahead of the crack tip along x-axis by letting y = 0 and |x — a| < a. It follows that

. - (1 - Kl) b o) . z
= 08 098 i)
(k1 +1) 2 2 ~ Bg
- —1)B B; — 4iB, By, 2
Topigr [(1c1 = 1)By, + (161 + 3)By;, — 4iBocBy,] + O o (82)
Thus, the stress singularity coefficients are found as
(St = iSu) = lim \/2(z — a) (8, — ity) = W{[(Kl + 1)Bg, + (1 = 3)B;, ] + lBOxBOy} (83)

which is identical to the results given by Lin and Lin (2002b).

4.3. Air matrix

For the case that the matrix is composed of air (1; = G; =0, u,, = 1) and the inclusion is made of
ferromagnetic material, the potential functions of magnetic fields take the form

Na+b

m(() ~ o [(Box — iBoy){ — (Box + iBo,) ('] (84)
() 2Bt 1B () (85)

ok (1 — p?)
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The corresponding magnetic fields can be written as

. 1 . 1 . (Boxa - iBoyb)f
H, +iH,), = — (B, +iB,), ~ ——— | — (Bob — iBpya) + 8~ D02)2 86
( y)l 'uo( y)l Ho(a_b) ( 0. 0y ) 22—(612—b2) ( )
. 1 . (Boxa+iB()yb) <1 l)
H, +iH,), = —— (B, + iB,), ~ w202 (2 | 87
( 2 Holra ( 2 Holro a b (®7)

If the applied magnetic induction is directed along y-direction (i.e. By, = 0), the magnetic fields (H, + iH,),
reduce to

. . By, ( b>
H +iH,), ~1—— [ 1 +- 88
(ot ith), ~ i (14 (38)
which is identical to the results derived by van de Ven (1984).

All the mechanical potential functions in S vanish, i.e. ¢;({) = ,({) =0, for the present case of air
matrix. The condition f* = 0 for the traction free boundary of an elliptic inclusion yields

—KZ @0 F— A Z proa ™ + kaa’k =A Z o0 + KZ oot — Z vio* (89)
=1 =1 =1 k=1 =1 =1
where
atb |i(g’—2g+pg) —i ] (a+D)p" g
~ ~ - fork=1,3,5,... 90
Vi 4 o _(g2+2gg._pg,2) ’ Vi -1 4(2n+1) or 3 Iy ( )
Applying the method of analytical continuation, we have
A71
mk:I_—pM(vk—pvk) for k=1,3,5,... and o, =0 fork#1,35,... (91)

and hence the stresses can be solved from Egs. (31), (37), (38) and (40).

For the special case of circular inclusion, the region S, will map onto a unit circle rather than an annulus.
Referring to Eq. (31) and using the feature that the potentials ¢5({) and y/}({) are holomorphic in S, in-
cluding the origin, the general solutions of function ¥*({) can be expressed as

V() =D+ ol (92)
k=1
where
0 0
D [1 0} (93)

The boundary condition f* = 0 renders
—A Z @0 " — ADwo"! + kaa’k =A Z o6" + AD®, 0 — Z viot (94)
k=1 k=1 k=1 k=1
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where
__ Moga | i(g —2g) ag® [ —i N
Vi~ [—(g+2g) , b B vi~0 fork#1,3 (95)
Solving for Eq. (94), the coefficients ®; can be obtained as
o :“‘)Zga [_gg], o =Al;,  @=0 fork#1,3 (96)

The magnetoelastic stresses then can be found via the use of Egs. (37), (38), (92), (93) and (96) and the
following transformation

Ly + tgg = b + t}y; Ly — too + Zitrf) = (txx - tyy + 2'itxy)e_zw (97)

This gives the stress components

1 .
(2 = " (B, + By,) + (Bj, — B;,) cos 20 + 2By, By, sin 20] (98)
o _ 1 2 2 2 2 r Y
log = m (Bo, + By,) — (By, — By,) [ 1 — ) €08 20 — 2B.Bo, | 1 — ) sm 20 (99)
@ _ 1 r 2 2 N
ty = m 2ByBo, | 1 — 3 ) cos 20— (B, — By,)| 1 - ) sin 20 (100)

in polar coordinates » and 6.

5. Conclusions

On the basis of the complex variable theory, a general solution for the magnetoelastic problem of the
elliptic inclusion within a ferromagnetic matrix is obtained. Since the elliptic inclusion problem can cover a
wide variety of particular cases, the solution provided in this paper is useful and general in the application
of plane magnetoelasticity. The results of some special examples, such as elliptic hole, elliptic rigid inclusion
and air matrix, are also given and analytically compared with the existing solutions. Besides, the stress
intensity factors for a line crack and the stress singularity coefficients for a rigid line inclusion are also
expressed in terms of material and geometric data explicitly. Distributions of the magnetoelastic stresses on
the interface around the circumference of the inclusion are displayed in graphic form to illustrate the effect
of the relevant parameters.
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