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Abstract

The problem of an elliptic inclusion embedded in an infinite matrix subjected to a uniform magnetic induction is

considered in this paper. Basing upon the two-dimensional magnetoelastic formulation, the technique of conformal

mapping, and the method of analytical continuation, a general solution of magnetic field quantities and the mag-

netoelastic stresses are obtained for both the matrix and the inclusion. Comparison is made with several special cases of

which the analytical solutions can be found in the literature, which shows that the solutions presented here are general

and exact. Moreover, the magnetoelastic stresses at the interface between the inclusion and the matrix are presented

with figures.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is known that there are some defects in the form of cracks, voids, inclusions, etc., existing in most
engineering materials. In view of its flexibility to cover a wide variety of particular cases, such as line or

circular inclusions, the elliptic inhomogeneity problems have received considerable interest. Early work by

Hardiman (1954) and Eshelby (1957) showed that a constant stress state within the elliptic inclusion is

induced by a uniform stress applied at infinity. By the use of conformal mapping and the Laurent series

expansion of complex functions, Gong and Meguid (1992) investigated the elliptical inclusion problem

under the action of antiplane shear.

For the defects in a ferromagnetic solid subjected to magnetic loading, many earlier investigators have

devoted to the crack problems. Based upon the linear theory of Pao and Yeh (1973) and the technique of
integral transformation, Shindo (1977) and Shindo et al. (1999) derived the magnetoelastic fields for the

soft ferromagnetic material containing a line crack. Lin and Yeh (2002) solved the crack problem in plane

magnetoelasticity by the use of complex variable method. The J -integrals around the cracks within

soft ferromagnets (Sabir and Maugin, 1996) and hard ferromagnets (Fomethe and Maugin, 1998) were
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derived on the basis of the rotationally invariant quasi-magnetostatic theory. On the magnetoelastic

problem with curvilinear boundary, van de Ven (1984) used Mathieu functions to study the magnetic

buckling of a beam of elliptic cross-section under transverse magnetic induction. Although the elastic

inclusion problems (summarized by Mura, 1988) and the crack problems in plane magnetoelasticity were
investigated extensively, the corresponding magnetoelastic problem of elliptic inclusion is still an inte-

resting and new study of research due to the widespread use of the application of magnetoelasticity in

various fields.

The objective of this paper is to find the magnetoelastic fields induced by the applied magnetic fields on

an infinite matrix containing an elliptic elastic inclusion. Since the formulation of complex variable

method in elasticity (Muskhelishvili, 1953; England, 1971) and magnetoelasticity (Lin and Yeh, 2002) is

compact, it is adopted in the following work. We introduce the complex potential functions of magnetic

and magnetoelastic fields which satisfy the corresponding governing equations. By the method of ana-
lytical continuation together with the proper boundary conditions, the magnetic and the magnetoelastic

functions can be solved explicitly. It is worthy to mention that we introduce a pertinent function to

convert the boundary condition into a form without the complex conjugate of the space variables. The

present solution which satisfies both the governing equations and the boundary conditions simulta-

neously is exact. Due to that the general solutions have not been found in the literature, the results of

several special cases, such as elliptic hole, elliptic rigid inclusion and air matrix, etc., are also provided

and compared with the existing analytical solutions. Hence the exactness of the present solutions can be

guaranteed.

2. Formulations of magnetic fields

A soft ferromagnetic medium containing an elliptical inhomogeneity under a remote uniform magnetic

induction is considered in the present study (see Fig. 1). The regions which are occupied by the matrix and

the inclusion are denoted by S1 and S2 respectively. Basing on the two-dimensional theory of magneto-

elasticity, the magnetic fields can be expressed as (Lin and Yeh, 2002)

Bx þ iBy ¼ l0lrðHx þ iHyÞ ¼ l0lrh0ðzÞ ð1Þ

where

hðzÞ ¼ uðx; yÞ þ icðx; yÞ ð2Þ

is a magnetic potential function of the complex variable z ð¼ xþ iyÞ, prime indicates differentiation with

respect to z and overhead bar denotes complex conjugate. The symbols Bj and Hk are magnetic induction

(or magnetic flux density) and magnetic intensity, l0 ¼ 4p � 10�7 N/A2 is a universal constant and lr is the
relative magnetic permeability.

Let us introduce the transformation function

z ¼ aþ b
2

f þ a� b
2

f�1 ð3Þ

which will map the region outside the elliptic inclusion in z-plane onto the exterior of the circle jfj ¼ 1 in the

transformed f-plane and the region inside the elliptic inclusion onto the interior of annular region between

the unit circle and a circle of radius
ffiffiffi
q

p
. Here q is related to the major semi-axis a and minor semi-axis b of

the elliptic inclusion in z-plane by

q ¼ a� b
aþ b

ð4Þ
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It is observed that the radius
ffiffiffi
q

p
is less than 1. The transformation in Eq. (3) is single valued in the exterior

region of inclusion but it becomes double valued within the elliptic inclusion. To remedy the discontinuity,

the following restriction should be satisfied for the relevant functions (Gong and Meguid, 1992)

pð ffiffiffi
q

p
rÞ ¼ pð ffiffiffi

q
p

=rÞ ð5Þ

where r ¼ eih.

In this study, a remote uniform magnetic induction is applied on a soft ferromagnetic body with an
elliptic inclusion. Using Eq. (4) and the technique of conformal mapping, the complex potential function

h1ðfÞ in S1 can be written as

h1ðfÞ ¼ h
ðfÞ þ h0ðfÞ for f 2 S1 ð6Þ

where

h0ðfÞ ¼ gz ¼ g
aþ b
2

f

�
þ a� b

2
f�1

�
ð7Þ

with

g ¼ B0e
�ia

l0lr1

ð8Þ

indicates the magnetic field of a remote uniform magnetic induction B0e
�iað¼ B0x � iB0yÞ which is directed

at an angle a with respect to the x-axis. Notice that h1ðfÞ corresponds to the magnetic function h1ðzÞ in the

transformed f-plane.
Since the magnetic function h2ðfÞ is holomorphic in the annular area S2 of the mapped f-plane, it can be

represented by a Taylor�s expansion as

Fig. 1. The far field stresses and magnetic induction on a matrix with an elliptic inclusion.
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h2ðfÞ ¼
X1
k¼�1

ekf
k for f 2 S2 ð9Þ

In view of Eq. (9), we may neglect the term e0 which has no contribution on the magnetic field. Applying

Eq. (5), the coefficient ek in Eq. (9) satisfies

e�k ¼ qkek ð10Þ
where q is defined in Eq. (4). In the present work, the inclusion and the matrix are assumed to be perfectly
bonded along their interface, the boundary conditions of magnetic fields can be expressed mathematically

as (Lin and Yeh, 2002)

u1 ¼ u2; l0lr1c1 ¼ l0lr2c2 along the interface f ¼ r ¼ eih ð11Þ

where

uj ¼ ½hjðfÞ þ hjðfÞ�=2; cj ¼ ½hjðfÞ � hjðfÞ�=ð2iÞ ð12Þ

can be obtained from Eq. (2). Employing Eqs. (6)–(10) and (12), the continuity conditions of magnetic fields
in Eq. (11) lead to

h
ðrÞ þ ð�gg þ gqÞ aþ b
2

r�1 �
X1
k¼1

�eekr�k �
X1
k¼1

qkekr�k

¼ ��hh

1

r

� �
� ðg þ �ggqÞ aþ b

2
r þ

X1
k¼1

ekrk þ
X1
k¼1

�qqk�eekrk ð13Þ

l0lr1 h
ðrÞ
�

� ð�gg � gqÞ aþ b
2

r�1

�
þ l0lr2

X1
k¼1

�eekr�k

 
�
X1
k¼1

qkekr�k

!

¼ l0lr1
�hh


1

r

� ��
� ðg � �ggqÞ aþ b

2
r

�
þ l0lr2

X1
k¼1

ekrk

 
�
X1
k¼1

�qqk�eekrk

!
ð14Þ

Basing on the properties of holomorphic functions and applying the method of analytical continuation, it

is convenient to introduce a new set of complex functions giðzÞ which are holomorphic in the entire domain

as

g1ðfÞ

g2ðfÞ

" #
¼

1 �1

l0lr1 l0lr2

" #
h
ðfÞP1
k¼1 �eekf

�k

" #
�

1

l0lr2

" #X1
k¼1

qkekf
�k

þ
1 1

�l0lr1 l0lr1

" #
�gg

gq

" #
aþ b
2

f�1 for jfj > 1 ð15Þ

and

g1ðfÞ

g2ðfÞ

" #
¼

1 �1

l0lr2 l0lr1

" # P1
k¼1 ekf

k

�hh

1

f

� �
2
64

3
75þ

1

�l0lr2

" #X1
k¼1

�qqk�eekf
k

�
1 1

l0lr1 �l0lr1

" #
g

�ggq

" #
aþ b
2

f for jfj < 1 ð16Þ
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On the basis of Liouville�s theorem, the complex functions g1ðfÞ and g2ðfÞ that are holomorphic in the entire

plane including the points at infinity are constant functions. Without loss of generality, we take gjðfÞ ¼ 0

ðj ¼ 1; 2Þ. Thus, the following solution can be obtained from Eqs. (15) and (16) as

h
ðfÞ ¼ lr1 � lr2

lr1 þ lr2

�gg
�

� gq
�
aþ b
2

f�1 þ 2lr2

lr1 þ lr2

X1
k¼1

qkekf
�k ð17Þ

X1
k¼1

ekf
k ¼ lr1

lr1 þ lr2

gðaþ bÞf þ lr2 � lr1

lr1 þ lr2

X1
k¼1

�qqk�eekf
k ð18Þ

The coefficients ek can be found by comparing the coefficients of fk in Eq. (18). This gives

e1 ¼
lr1 ðlr2 þ lr1Þgðaþ bÞ þ ðlr2 � lr1Þ�ggða� bÞ
h i

ðlr2 þ lr1Þ
2 � ðlr2 � lr1Þ

2q2
; ek ¼ 0 for k 6¼ 1;�1 ð19Þ

Inserting Eqs. (17) and (19) into (6) and (9) yields the complex potential hjðfÞ in Sj ðj ¼ 1; 2Þ as

h1ðfÞ ¼
aþ b
2

gf þ bf�1 ð20Þ

h2ðfÞ ¼ e1f þ qe1f
�1 ð21Þ

where

b ¼ lr1 � lr2

lr1 þ lr2

aþ b
2

�gg þ 2lr2

lr1 þ lr2

qe1 ð22Þ

For the special case of the homogeneous magnetic problem (i.e. lr1 ¼ lr2), it is easy to verify that

h1ðfÞ ¼ h2ðfÞ ¼ gz ð23Þ

Applying Eq. (3), we have

f ¼ zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � ða2 � b2Þ

p
aþ b

; f�1 ¼ z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � ða2 � b2Þ

p
a� b

ð24Þ

Here the sign convention in Eq. (24) is chosen to assure the mapping between the points of jzj � 1 and

jfj � 1.

In order to express the magnetic potential function in z-plane, we introduce the following transformation

h0jðzÞ ¼ h0jðfÞ
df
dz

¼
h0jðfÞ
m0ðfÞ ; j ¼ 1; 2 ð25Þ

Thus, the magnetic fields in both the matrix and the inclusion can be expressed in terms of z via the use of

Eqs. (1), (20), (21), (24) and (25). It follows

ðHx þ iHyÞ1 ¼
1

l0lr1

ðBx þ iByÞ1 ¼ h01ðzÞ ¼
�gg
2

 
þ

�bb
a� b

!
þ �gg

2

 
�

�bb
a� b

!
�zzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�zz2 � ða2 � b2Þ
p ð26Þ

ðHx þ iHyÞ2 ¼
1

l0lr2

ðBx þ iByÞ2 ¼ h02ðzÞ ¼
2�ee1
aþ b

ð27Þ

which reveals that the magnetic fields in S2 is uniform.
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3. Magnetoelastic stresses induced by circular inclusion

Basing on the complex formulation of the plane magnetoelasticity (Lin and Yeh, 2002), the resultant

force acting on the material to the left of the arbitrary arc AB can be written as

f ðjÞ
x þ if ðjÞ

y ¼ �i /jðzÞ
�

þ z/0
jðzÞ þ wjðzÞ þ l0vj

Z B

A
h0jðzÞh0jðzÞdz�

l0

2
ðlrj þ vjÞ

Z B

A
h0jðzÞh0jðzÞd�zz

�
j ¼ 1; 2 ð28Þ

where the quantities with superscript or subscript j will be referred to Sj ðj ¼ 1; 2Þ, i.e. the magnetic sus-

ceptibility vj ð¼ lrj � 1Þ and the complex potential functions /jðzÞ and wjðzÞ of stresses are defined in the

corresponding region Sj. The displacements can be represented as

uðjÞx þ iuðjÞy ¼ 1

2Gj
jj/jðzÞ
�

� z/0
jðzÞ � wjðzÞ �

Gj

ðkj þ 2GjÞ
l0vjhjðzÞh0jðzÞ

�
j ¼ 1; 2 ð29Þ

where the symbols kj and Gj are Lam�eeys constants and jj ¼ ðkj þ 3GjÞ=ðkj þ GjÞ ¼ 3–4mj for plane strain

(England, 1971). The symbol mj denotes the Poisson�s ratio in Sj. It is remarked that those terms related to

body force are omitted in Eqs. (28) and (29). The stress components take the form

tðjÞxx

�
þ tðjÞyy

�T
¼ tðjÞxx

�
þ tðjÞyy

�
þ tðjÞxx

�
þ tðjÞyy

�M
tðjÞyy

�
� itðjÞxy

�T
¼ tðjÞyy

�
� itðjÞxy

�
þ tðjÞyy

�
� itðjÞxy

�M ð30Þ

where

tðjÞxx

�
þ tðjÞyy

�
¼ 2 /0

jðzÞ
h

þ /0
jðzÞ
i
þ l0vjh

0
jðzÞh0jðzÞ; tðjÞxx

�
þ tðjÞyy

�M
¼ l0vjh

0
jðzÞh0jðzÞ;

tðjÞyy

�
� itðjÞxy

�
¼ /0

jðzÞ þ /0
jðzÞ þ z/00

j ðzÞ
h

þ w0
jðzÞ
i
þ 1

2
l0vj h0jðzÞh0jðzÞ

h
� h0jðzÞh0jðzÞ

i
;

tðjÞyy

�
� itðjÞxy

�M
¼ 1

2
l0 vjh

0
jðzÞh0jðzÞ

h
� lrjh

0
jðzÞh0jðzÞ

i
ð31Þ

In Eq. (30), the stress components with superscript T indicate the total stresses which are the sum of the

Maxwell stresses with superscript M and the magnetoelastic stresses. The Maxwell stresses which are not

related to the deformation are defined artificially just for the sake of convenience. Namely, the magneto-

elastic stresses rather than the total stresses are physically practical in spite of that the total stresses are

continuous across the boundary (Pao and Yeh, 1973).

By proper rearrangement, Eqs. (28) and (29) lead to

f ¼ Re½AUðf; �ffÞ þ pðf; �ffÞ�; f
 ¼ Re½AU
ðf; �ffÞ þ p
ðf; �ffÞ� ð32Þ

u ¼ Re½LUðf; �ffÞ þ qðf; �ffÞ�; u
 ¼ Re½L
Uðf; �ffÞ þ q
ðf; �ffÞ� ð33Þ
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where

f ¼
f ð1Þ
x

f ð1Þ
y

" #
; f
 ¼

f ð2Þ
x

f ð2Þ
y

" #
; u ¼

uð1Þx

uð1Þy

" #
; u
 ¼

uð2Þx

uð2Þy

" #
;

A ¼
�i i

�1 �1

� �
; L ¼ 1

2G1

j1 �1

�ij1 �i

� �
; L
 ¼ 1

2G2

j2 �1

�ij2 �i

� �

Uðf; �ffÞ ¼
/1ðfÞ

-1ðf; �ffÞ

" #
; U
ðf; �ffÞ ¼

/2ðfÞ
-2ðf; �ffÞ

" #
;

pðz;�zzÞ ¼
�ip

�p

� �
; p
ðz;�zzÞ ¼

�ip


�p


� �
; qðz;�zzÞ ¼

q

�iq

� �
; q
ðz;�zzÞ ¼

q


�iq


� �
ð34Þ

with

-jðf; �ffÞ ¼ �zz/0
jðzÞ þ wjðzÞ ¼

aþ b
2

�ff

�
þ a� b

2�ff

�
/0

jðfÞ
m0ðfÞ þ wjðfÞ; j ¼ 1; 2

p ¼ l0v1

Z
s
h01ðzÞh01ðzÞdz�

l0

2
ðlr1 þ v1Þ

Z
s
h01ðzÞh01ðzÞd�zz

p
 ¼ l0v2

Z
s
h02ðzÞh02ðzÞdz�

l0

2
ðlr2 þ v2Þ

Z
s
h02ðzÞh02ðzÞd�zz

q ¼ � l0v1

2ðk1 þ 2G1Þ
h1ðzÞh01ðzÞ; q
 ¼ � l0v2

2ðk2 þ 2G2Þ
h2ðzÞh02ðzÞ

ð35Þ

The surface tractions and the displacements should be continuous across the perfectly bonded interface
between the inclusion and the matrix. i.e.

f ¼ f
; u ¼ u
 along the interface f ¼ r ¼ eih ð36Þ

To solve the present problem, we introduce the function

WðfÞ ¼ /1ðfÞ
t1ðfÞ

� �
; W
ðfÞ ¼ /2ðfÞ

t2ðfÞ

� �
ð37Þ

where

tjðfÞ ¼
aþ b
2f

�
þ a� b

2
f

�
/0

jðfÞ
m0ðfÞ þ wjðfÞ; j ¼ 1; 2 ð38Þ

Applying Eq. (3) and using the relation �rr ¼ 1=r along the interface, it is easy to verify that

-jðr; �rrÞ ¼ tjðrÞ; Uðr; �rrÞ ¼ WðrÞ; U
ðr; �rrÞ ¼ W
ðrÞ ð39Þ
This means that the boundary conditions can now be converted into a form involving r only. Thus, the

problem becomes to determine the complex functions WðfÞ and W
ðfÞ which are expressed in terms of the

space variable f rather than to solve the complex functions Uðf; �ffÞ and U
ðf; �ffÞ which are related to both f
and �ff. In order to satisfy the holomorphic requirement on S1 and S2, the functions WðfÞ and W
ðfÞ must

take the form

WðfÞ ¼ rðfÞ þ sf; W
ðfÞ ¼
X1
k¼�1

xkf
k ð40Þ
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where

x�k ¼ qkxk ð41Þ
The vector s in Eq. (40) can be solved from the limiting values of stress functions /0

1ðfÞ and w0
1ðfÞ at infinity

as

/0
1ðfÞ ¼

aþ b
2

C

�
þ 1

2l0

1

4

�
� v1

l2
r1

�
ðB2

0x þ B2
0yÞ
�
þO

1

f

� �
for jfj � 1 ð42Þ

w0
1ðfÞ ¼

aþ b
2

C0
�

� 1

2l0

1

2

�
� lr1 þ v1

l2
r1

�
ðB2

0x � 2iB0xB0y � B2
0yÞ
�
þO

1

f

� �
for jfj � 1 ð43Þ

where

C ¼ 1

4
ðr1

1 þ r1
2 Þ þ i

2G1x1

1þ j
; C0 ¼ � 1

2
ðr1

1 � r1
2 Þe�2i- ð44Þ

with

x1 ¼ ImðoD=ozÞ ð45Þ

The symbols x1 and (r1
1 þ ir1

2 ) denote the rotation and the applied principal stresses at infinity. Sub-

stituting Eqs. (38), (42) and (43) into (37) and taking jfj � 1 renders

s ¼ sa
sb

� �
ð46Þ

where

sa ¼
aþ b
2

C

�
þ 1

2l0

1

4

�
� v1

l2
r1

�
ðB2

0x þ B2
0yÞ
�

ð47Þ

sb ¼
a� b
2

C

�
þ 1

2l0

1

4

�
� v1

l2
r1

�
ðB2

0x þ B2
0yÞ
�
þ aþ b

2
C0
�

� 1

2l0

1

2

�
� lr1 þ v1

l2
r1

�
ðB2

0x � 2iB0xB0y � B2
0yÞ
�

ð48Þ

By applying �rr ¼ 1=r together with Eqs. (20), (21), (32)–(35), (37) and (39), the continuity conditions of

Eq. (36) result in

ArðrÞ þ �AA�ssr�1 � �AA
X1
k¼1

�xxkr
�k � A

X1
k¼1

qkxkr
�k þ

X1
k¼1

�vvkr
�k

¼ ��AA�rr
1

r

� �
� Asr þ A

X1
k¼1

xkr
k þ �AA

X1
k¼1

qk �xxkr
k �

X1
k¼1

vkr
k ð49Þ

LrðrÞ þ L�ssr�1 � L

X1

k¼1

�xxkr
�k � L


X1
k¼1

qkxkr
�k þ

X1
k¼1

�wwkr
�k

¼ �L�rr 1

r

� �
� Lsr þ L


X1
k¼1

xkr
k þ L


X1
k¼1

qk �xxkr
k �

X1
k¼1

wkr
k ð50Þ
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where

vk ¼ l0

iðvk þ v
kÞ
ðvk � v
kÞ

� �
; wk ¼ l0

iðwk þ w

kÞ

ðwk � w

kÞ

� �
ð51Þ

with

vk ¼

l0
v1
4

2b q�gg � 2�bb
aþb

� �
� ðaþ bÞg�gg

h i
þ ðlr1þv1Þ�gg

8
½4�bb � ða� bÞ�gg� þ �ee1

2ðaþbÞ 2v2e1 � ðlr2 þ v2Þq�ee1
h in o

for k ¼ 1

l0q
ðk�1Þ=2

8k 2v1½ða� bÞ�gg � 2�bb� 2b
aþb �

g
q

� �
� ðlr1 þ v1Þ 4�bb2

ða�bÞ � 4�bb�gg þ �gg2ða� bÞ
h in o

for k ¼ 3; 5; 7; . . .

0 for k 6¼ 1; 3; 5; . . .

8>>><
>>>:

v
k ¼
l0

8ðaþ bÞ 4v1
�bbgðaþ bÞ � ðlr1 þ v1Þðaþ bÞ2g2 � 8v2e1�ee1q þ 4ðlr2 þ v2Þe21

h i
for k ¼ 1

0 for k 6¼ 1

8<
:

wk ¼

l0v1

8ðk1 þ 2G1Þðaþ bÞ g�ggðaþ bÞ2 þ 2b�ggða� bÞ � 4b�bb
h i

� v2e
2
1

2ðk2 þ 2G2Þðaþ bÞ for k ¼ 1

l0v1

8ðk1 þ 2G1Þ
½�ggða� bÞ � 2�bb� g

q
þ 2b
aþ b

� �
qðk�1Þ=2 for k ¼ 3; 5; 7; . . .

0 for k 6¼ 1; 3; 5; . . .

8>>>>><
>>>>>:

w

k ¼

l0

�v1
�bbg

4ðk1 þ 2G1Þ
þ v2�ee

2
1q

2ðk2 þ 2G2Þðaþ bÞ

" #
for k ¼ 1

0 for k 6¼ 1

8><
>:

ð52Þ
Similar to the previous approach, a new set of complex functions nðfÞ can be introduced on the basis of

analytical continuation as

nðfÞ ¼ A ��AA
L �L


� �
rðfÞP1

k¼1
�xxkf

�k

� �
� A

L


� �X1
k¼1

qkxkf
�k þ

�AA
L

� �
�ssf�1 þ

X1
k¼1

�vvk
�wwk

� �
f�k ð53Þ

for jfj > 1 and

nðfÞ ¼ A ��AA
L
 �L

� � P1
k¼1 xkf

k

�rr 1
f

� �" #
þ

�AA
L




� �X1
k¼1

qk �xxkf
k � A

L

� �
sf �

X1
k¼1

vk
wk

� �
fk ð54Þ

for jfj < 1. By Liouville�s theorem, we have nðfÞ as a constant function. However, this constant function

corresponds to a rigid motion which can be neglected (i.e. nðfÞ ¼ 0Þ. Putting this result into Eqs. (53) and
(54) and using the following formulation,

A ��AA
L �L


� ��1

¼ Ea Eb

Ec Ed

� �
ð55Þ

where

Ea ¼
iG1#a �G1#a

�ij2G1#b �j2G1#b

� �
; Eb ¼

2G1G2#a 2iG1G2#a

�2G1G2#b 2iG1G2#b

� �
;

Ec ¼
iG2#b G2#b

�ij1G2#a j1G2#a

� �
; Ed ¼

�2G1G2#b 2iG1G2#b

2G1G2#a 2iG1G2#a

� �
ð56Þ

with

#a ¼
1

2ðG1 þ j1G2Þ
; #b ¼

1

2ðG2 þ j2G1Þ
ð57Þ
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we can obtain

rðfÞ ¼ ðEaAþ EbL

Þ
X1
k¼1

qkxkf
�k � ðEa

�AAþ EbLÞ�ssf�1 �
X1
k¼1

ðEa�vvk þ Eb�wwkÞf�k ð58Þ

X1
k¼1

xkf
k ¼ ðEc

�AAþ EdL

Þ
X1
k¼1

qk �xxkf
k � ðEcAþ EdLÞsf �

X1
k¼0

ðEcvk þ EdwkÞfk ð59Þ

Solving for Eq. (59) gives

xk ¼ ½I� ðEcAþ EdL

ÞðEcAþ EdL


Þq2k��1½ðEcAþ EdL

Þqk�yyk þ yk� ð60Þ

where I is an 2� 2 identity matrix and yk are defined as

yk ¼ �½ðEcAþ EdLÞsdk1 þ ðEcvk þ EdwkÞ� for k ¼ 1; 3; 5; . . . ð61Þ
and the other yk �s vanish. It is noted that the Kronecker delta dk1 equals zero except for k ¼ 1. Using Eqs.

(34), (56), (57) and (60), the coefficients xk (for k > 0) can be expressed in an explicit form as

xk ¼
2G2

1� 4ðj2G1 � j1G2ÞðG1 � G2Þ#a#bq2k

xa
k

xb
k

� �
ð62Þ

where

xa
k ¼ ½2ðG1 � G2Þj1#a#bq

k�ssb þ #bsa�dk1 � l0½2ðG1 � G2Þ#a#bq
kðj1�vv
k þ 2iG1�ww


kÞ � #bðvk � 2iG1wkÞ�;
xb

k ¼ ½2ðj2G1 � j1G2Þ#a#bq
k�ssa þ j1#asb�dk1 þ l0½2ðj2G1 � j1G2Þ#a#bq

kð�vvk þ 2iG1�wwkÞ � #aðj1v
k � 2iG1w

kÞ�

ð63Þ

Having the results of rðfÞ and xk and using Eqs. (37), (38) and (40), the functions /jðfÞ and wjðfÞ can now

be solved and the whole magnetoelastic fields can be determined from Eqs. (26), (27) and (29)–(31). In order

to focus on the effect of magnetic loading, the far field stresses r1
1 and r1

2 whose effect were well studied are
assumed to be zero in the following illustrations.

For an elliptic inclusion in z-plane, it is pertinent to express the stress components in terms of the co-

ordinates x0 and y 0 which are tangent and normal to the boundary, respectively. The stress components are

transformed from those on the coordinate system (x; y) as

tx0x0
ty0y0
tx0y0

2
4

3
5 ¼

cos2 dr sin2 dr 2 cos dr sin dr

sin2 dr cos2 dr �2 cos dr sin dr

� cos dr sin dr cos dr sin dr cos2 dr � sin2 dr

2
4

3
5 txx

tyy
txy

2
4

3
5 ð64Þ

where dr is the angle between the x-axis and x0-axis as shown in Fig. 1. Since the solutions of the stress

functions are complicated, it is almost impossible to obtain the maximum interfacial stress as an explicit

function of the material properties and the geometric data. We can conclude from Eqs. (26), (27), (31), (37),
(40), (58), (62) and (63) that the magnetoelastic stresses are related to the incident angle of magnetic in-

duction, the ratios G2=G1 and lr2=lr1 of the material properties and the ellipticity denoted by b=a of the

inclusion. Furthermore, the relevant material properties of the matrix and the inclusion are assumed to be

m1 ¼ m2 ¼ 0:3 and lr1 ¼ 1000 in the following numerical examples. The condition mj ¼ 0:3 renders

kj=Gj ¼ 1:8. Figs. 2 and 3 display the variation of the interfacial magnetoelastic stresses on the incident

angle of the applied magnetic induction with lr2=lr1 ¼ G2=G1 ¼ 0.5 and different b=a ratios. All the stresses

in the figures of the present study are presented in a dimensionless form. In these figures, tx0x0 , ty0y0 and tx0y0
denotes the tangential, normal and shear magnetoelastic stresses acting on the matrix along the interface. It
is noted that the reference quantity B2

0=2l0 ¼ 400,000 N/m2 (58 psi) will be induced by a typical magnetic

induction B0 ¼ 1 T (tesla). In order to clarify the character of the interfacial stresses, the extreme values of
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the magnetoelastic stress on each curve of Figs. 2 and 3 and their corresponding angle d are presented in

Tables 1 and 2, respectively. From Figs. 2 and 3, we can find that all the distribution curves of the mag-

netoelastic stress have a period 180� with the angle d. Therefore, the adding of 180� to each angle d given in

Tables 1 and 2 will lead to the same extreme value of the magnetoelastic stress. The extreme values of stress

distribution tend to occur at the end of the major axis for both the tangential and the normal magneto-

elastic stresses and become sharper with decreasing b=a. It is observed that the tangential stresses will

increase with the incident angle a but the normal stresses decrease with increasing a. This result reveals that

Fig. 2. Interfacial stresses on the matrix subjected to a remote uniform magnetic induction under different incident angle with

lr2=lr1 ¼ G2=G1 ¼ 0:5, b=a ¼ 0:5: (a) tx0x0 , (b) ty0y0 , (c) tx0y0 .
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the component B0y of magnetic induction is the source of stress concentration and will cause singularity of

the magnetoelastic stress when the inclusion approaches to a line inclusion. In Fig. 3(c), the extreme values
(maximum or minimum) of the shear magnetoelastic stress for a ¼ 0� and 90� appear in the same angle d.
For a point E located on the positive real axis, the dependence of the interfacial stress on b=a under different
G2=G1 is shown in Fig. 4. The value of lr2=lr1 is taken as 0.5 and a equals 45� in this figure. It is remarked

that the magnetoelastic stresses will increase with increasing b=a and G2=G1. Notice that the total stresses

rather than the magnetoelastic stresses are continuous across the interface between the inclusion and the

Fig. 3. Interfacial stresses on the matrix subjected to a remote uniform magnetic induction under different incident angle with

lr2=lr1 ¼ G2=G1 ¼ 0:5, b=a ¼ 0:1: (a) tx0x0 , (b) ty0y0 , (c) tx0y0 .
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matrix. From Eqs. (19), (22), (26), (27), (31), (37), (40), (58), (62) and (63), we find that lr1 � 1 will cause

insignificant Maxwell stresses. Therefore, the magnetoelastic stresses are almost continuous across the

boundary for the present illustrative examples. In other words, the magnetoelastic stresses shown in Figs.

2–4 also can be regarded as the corresponding ones on the inclusion.

4. Special cases

4.1. Holes

When the inclusion is a traction free hole ðk2 ¼ G2 ¼ 0, lr2 ¼ 1Þ within the soft ferromagnetic matrix

(lr1 � 1), the mapping function in Eq. (3) will map the interior of an elliptic hole onto a circular hole.

Notice that h2ðfÞ is holomorphic in S2 which contains the origin. Therefore, the potential functions of

magnetic fields induced by a uniform magnetic induction are

h1ðfÞ �
1

l0lr1

aþ b
2

ðB0x

 
� iB0yÞf þ ðB0x þ iB0yÞf�1

!
ð65Þ

h2ðfÞ �
2ðB0xb� iB0yaÞ
l0lr1ð1� q2Þ f

"
þ qf�1

#
ð66Þ

Thus the magnetic fields can be obtained from Eqs. (1) and (25) as

ðHx þ iHyÞ1 ¼
1

l0lr1

ðBx þ iByÞ1 �
1

l0lr1ða� bÞ ðB0xa

2
64 � iB0ybÞ �

ðB0xb� iB0yaÞ�zzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zz2 � ða2 � b2Þ

p
3
75 ð67Þ

Table 1

The extreme values and circumferential angle of the magnetoelastic stresses (b=a ¼ 0:5)

Extreme value tx0x0=ðB2
0=2l0Þ ty0y0=ðB2

0=2l0Þ tx0y0=ðB2
0=2l0Þ

Max (d) Min (d) Max (d) Min (d) Max (d) Min (d)

a ¼ 0� 0.23 (90�) )0.10 (0�) 0.35 (0�) )0.11 (90�) 0.23 (14�) )0.23 (166�)
a ¼ 30� 0.39 (165�) )0.11 (13�) 0.33 (9�) )0.16 (160�) 0.19 (50�) )0.31 (177�)
a ¼ 45� 0.52 (170�) )0.10 (20�) 0.31 (15�) )0.22 (168�) 0.19 (100�) )0.31 (0�)
a ¼ 60� 0.65 (174�) )0.08 (30�) 0.29 (28�) )0.22 (172�) 0.22 (140�) )0.34 (5�)
a ¼ 90� 0.77 (0�) )0.08 (90�) 0.27 (90�) )0.32 (0�) 0.30 (166�) )0.30 (14�)

Table 2

The extreme values and circumferential angle of the magnetoelastic stresses (b=a ¼ 0:1)

Extreme value tx0x0=ðB2
0=2l0Þ ty0y0=ðB2

0=2l0Þ tx0y0=ðB2
0=2l0Þ

Max (d) Min (d) Max (d) Min (d) Max (d) Min (d)

a ¼ 0� 0.12 (90�) )0.18 (0�) 0.87 (0�) )0.05 (90�) 0.40 (1�) )0.40 (179�)
a ¼ 30� 0.89 (0�) )0.23 (3�) 0.30 (0�) )0.17 (177�) 0.16 (6�) )0.99 (0�)
a ¼ 45� 1.96 (0�) )0.28 (3�) 0.34 (3�) )0.27 (0�) 0.19 (175�) )1.15 (0�)
a ¼ 60� 3.03 (0�) )0.22 (3�) 0.37 (3�) )0.85 (0�) 0.33 (178�) )0.99 (0�)
a ¼ 90� 4.10 (0�) )0.01 (90�) 0.28 (90�) )1.42 (0�) 0.73 (177�) )0.73 (1�)
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ðHx þ iHyÞ2 ¼
1

l0

ðBx þ iByÞ2 �
ðB0xbþ iB0yaÞ

l0lr1

1

a

�
þ 1

b

�
ð68Þ

The comparison between Eqs. (67) and (68) indicates that the magnetic induction ðBx þ iByÞ2 in S2 is much

smaller than ðBx þ iByÞ1 in S1. Such results guarantee the assumption that the boundary of the hole (or

crack) within a soft ferromagnetic medium can be viewed as an insulated surface for magnetic fields and
hence the magnetic fields inside the hole is negligible (Lin and Yeh, 2002; Lin and Lin, 2002a).

Fig. 4. Interfacial stresses at the point E (d ¼ 0�) on the matrix subjected to a remote uniform magnetic induction of incident angle

a ¼ 45� with lr2=lr1 ¼ 0:5: (a) tx0x0 , (b) ty0y0 , (c) tx0y0 .
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Since the inclusion is now composed of air, all the mechanical potential functions in S2 vanish, i.e.

/2ðfÞ ¼ w2ðfÞ ¼ 0. Referring to the previous derivations, the boundary condition of f ¼ 0 for a traction free

hole leads to

ArðrÞ þ �AA�ssr�1 þ
X1
k¼1

�vvkr
�k ¼ ��AA�rr

1

r

� �
� Asr �

X1
k¼1

vkr
k ð69Þ

By applying the method of analytical continuation, Eq. (69) yields

rðfÞ ¼ �A�1 �AA�ssf�1

 
þ
X1
k¼1

�vvkf
�k

!
� �A�1 �AA�ssf�1 ð70Þ

where the last approximation is deduced from the estimation ðv2nþ1=saÞ � ðv2nþ1=sbÞ � Oð1=lr1Þ � 1.

/1ðfÞ ¼ saf � �ssbf
�1; w1ðfÞ ¼ sbf � �ssaf

�1 � qf þ f�1

f � qf�1
saf
�

þ �ssbf
�1
�

ð71Þ

If one let the minor semi-axis b approach to zero, the elliptic hole becomes a crack of length 2a. We can

obtain the magnetic fields and the corresponding magnetoelastic potential functions by taking b ¼ 0 in Eqs.

(17) and (19). The results are

h1ðfÞ �
a

l0lr1

ðB0x

 
� iB0yÞf þ ðB0x þ iB0yÞf�1

!
ð72Þ

h2ðfÞ �
a

l0lr1

ðB0x � iB0yÞf ð73Þ

Then the magnetic fields in S1 and S2 can be expressed as

ðHx þ iHyÞ1 ¼
1

l0lr1

ðBx þ iByÞ1 �
1

l0lr1

B0x

0
B@ þ iB0y�zzffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�zz2 � a2
p

1
CA ð74Þ

ðHx þ iHyÞ2 ¼
1

l0

ðBx þ iByÞ2 �
ðB0x þ iB0yÞ

l0lr1

�zzffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zz2 � a2

p

0
B@ þ 1

1
CA ð75Þ

and

/1ðfÞ ¼ saf � �ssbf
�1; w1ðfÞ ¼ sbf � �ssaf

�1 � f þ f�1

f � f�1
ðsaf þ �ssbf

�1Þ ð76Þ

The coefficients sa and sb can be determined from Eqs. (47) and (48) by letting b ¼ 0. For a point departed

from the crack tip with a small distance along the x-axis, the stress components tyy � itxy on it can be ob-

tained by substituting Eqs. (74) and (76) into (31) and taking y ¼ 0, jxj > a, (i.e. z ¼ �zz ¼ x). This gives

tyy � itxy ¼
1

2l0

ðB2
0y � iB0xB0yÞ

zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p þO
B2
0

l0lr1

� �
ð77Þ

where B2
0 ¼ B2

0x þ B2
0y and lr1 � 1. Notice that those terms with singularity order higher than 1=r�1=2 are

omitted here because they will decay vary rapidly with the distance away from the crack tips (Lin and Yeh,

2002). The stress intensity factors are given as
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ðkI � ikIIÞ ¼ lim
z!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz� aÞ

p
ðtyy � itxyÞ �

ffiffiffi
a

p

2l0

ðB2
0y � iB0xB0yÞ ð78Þ

which is identical to the results given by Lin and Yeh (2002).

4.2. Rigid inclusion

When the inclusion is a magnetically insulated and absolutely rigid body, the magnetic function in Eqs.

(65) and (66) and the magnetic fields in Eqs. (67) and (68) are also valid. The boundary condition u ¼ 0

renders

LrðrÞ þ L�ssr�1 þ
X1
k¼1

�wwkr
�k ¼ �L�rr 1

r

� �
� Lsr �

X1
k¼1

wkr
k ð79Þ

By applying the method of analytical continuation, Eq. (79) leads to

rðfÞ ¼ �L�1 L�ssf�1

 
þ
X1
k¼1

�wwkf
�k

!
� �L�1L�ssf�1 ð80Þ

The last approximation is derived from the estimation similar to that given in Eq. (70).

/1ðfÞ ¼ saf þ
�ssb
j1

f�1; w1ðfÞ ¼ sbf þ j1�ssaf
�1 � qf þ f�1

f � qf�1
saf

 
� �ssb

j1

f�1

!
ð81Þ

Now the elliptic rigid inclusion becomes a rigid line inclusion of length 2a (i.e. b ¼ 0), we can obtain the
stresses tyy � itxy ahead of the crack tip along x-axis by letting y ¼ 0 and jx� aj � a. It follows that

tyy � itxy ¼
ð1� j1Þ
16l0j1

ðj1

hn
þ 1ÞB2

0x þ ðj1 � 3ÞB2
0y

i
þ 4iB0xB0y

o zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p

þ ðj1 þ 1Þ
16l0j1

½ðj1 � 1ÞB2
0x þ ðj1 þ 3ÞB2

0y � 4iB0xB0y � þO
B2
0

l0lr1

� �
ð82Þ

Thus, the stress singularity coefficients are found as

ðSI � iSIIÞ ¼ lim
z!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz� aÞ

p
ðtyy � itxyÞ �

ffiffiffi
a

p ð1� j1Þ
16l0j1

½ðj1

n
þ 1ÞB2

0x þ ðj1 � 3ÞB2
0y � þ 4iB0xB0y

o
ð83Þ

which is identical to the results given by Lin and Lin (2002b).

4.3. Air matrix

For the case that the matrix is composed of air ðk1 ¼ G1 ¼ 0, lr1 ¼ 1Þ and the inclusion is made of
ferromagnetic material, the potential functions of magnetic fields take the form

h1ðfÞ �
aþ b
2l0

ðB0x

 
� iB0yÞf � ðB0x þ iB0yÞf�1

!
ð84Þ

h2ðfÞ �
2ðB0xa� iB0ybÞ
l0lr2ð1� q2Þ ðf þ qf�1Þ ð85Þ
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The corresponding magnetic fields can be written as

ðHx þ iHyÞ1 ¼
1

l0

ðBx þ iByÞ1 �
1

l0ða� bÞ

2
64� ðB0xb� iB0yaÞ þ

ðB0xa� iB0ybÞ�zzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zz2 � ða2 � b2Þ

p
3
75 ð86Þ

ðHx þ iHyÞ2 ¼
1

l0lr2

ðBx þ iByÞ2 �
ðB0xaþ iB0ybÞ

l0lr2

1

a

�
þ 1

b

�
ð87Þ

If the applied magnetic induction is directed along y-direction (i.e. B0x ¼ 0), the magnetic fields ðHx þ iHyÞ2
reduce to

ðHx þ iHyÞ2 � i
B0y

l0lr2

1

�
þ b
a

�
ð88Þ

which is identical to the results derived by van de Ven (1984).
All the mechanical potential functions in S1 vanish, i.e. /1ðfÞ ¼ w1ðfÞ ¼ 0, for the present case of air

matrix. The condition f
 ¼ 0 for the traction free boundary of an elliptic inclusion yields

�A
X1
k¼1

�xxkr
�k � A

X1
k¼1

qkxkr
�k þ

X1
k¼1

�vvkr
�k ¼ A

X1
k¼1

xkr
k þ A

X1
k¼1

qk �xxkr
k �

X1
k¼1

vkr
k ð89Þ

where

v1 �
aþ b
4

l0

iðg2 � 2g�gg þ q�gg2Þ
�ðg2 þ 2g�gg � q�gg2Þ

" #
; vk �

�i

�1

� �
ðaþ bÞqn�1l0g

2

4ð2nþ 1Þ for k ¼ 1; 3; 5; . . . ð90Þ

Applying the method of analytical continuation, we have

xk ¼
A�1

1� q2k
ðvk � q�vvkÞ for k ¼ 1; 3; 5; . . . and xk ¼ 0 for k 6¼ 1; 3; 5; . . . ð91Þ

and hence the stresses can be solved from Eqs. (31), (37), (38) and (40).
For the special case of circular inclusion, the region S2 will map onto a unit circle rather than an annulus.

Referring to Eq. (31) and using the feature that the potentials /0
2ðfÞ and w0

2ðfÞ are holomorphic in S2 in-

cluding the origin, the general solutions of function W
ðfÞ can be expressed as

W
ðfÞ ¼ Dx1f
�1 þ

X1
k¼1

xkf
k ð92Þ

where

D ¼ 0 0

1 0

� �
ð93Þ

The boundary condition f
 ¼ 0 renders

��AA
X1
k¼1

�xxkr
�k � ADx1r

�1 þ
X1
k¼1

�vvkr
�k ¼ A

X1
k¼1

xkr
k þ �AAD�xx1r �

X1
k¼1

vkr
k ð94Þ
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where

v1 �
l0ga
2

iðg � 2�ggÞ
�ðg þ 2�ggÞ

� �
; v3 �

l0ag
2

6

�i

�1

� �
; vk � 0 for k 6¼ 1; 3 ð95Þ

Solving for Eq. (94), the coefficients xk can be obtained as

x1 ¼
l0ga
2

�gg
�g

� �
; x3 ¼ A�1v3; xk ¼ 0 for k 6¼ 1; 3 ð96Þ

The magnetoelastic stresses then can be found via the use of Eqs. (37), (38), (92), (93) and (96) and the

following transformation

trr þ thh ¼ txx þ tyy ; trr � thh þ 2itrh ¼ ðtxx � tyy þ 2itxyÞe�2ih ð97Þ

This gives the stress components

tð2Þrr ¼ 1

l0

½ðB2
0x þ B2

0yÞ þ ðB2
0x � B2

0yÞ cos 2h þ 2B0xB0y sin 2h� ð98Þ

tð2Þhh ¼ 1

l0

ðB2
0x

�
þ B2

0yÞ � ðB2
0x � B2

0yÞ 1

�
� r2

a2

�
cos 2h � 2B0xB0y 1

�
� r2

a2

�
sin 2h

�
ð99Þ

tð2Þrh ¼ 1

l0

2B0xB0y 1

��
� r2

a2

�
cos 2h � ðB2

0x � B2
0yÞ 1

�
� r2

a2

�
sin 2h

�
ð100Þ

in polar coordinates r and h.

5. Conclusions

On the basis of the complex variable theory, a general solution for the magnetoelastic problem of the

elliptic inclusion within a ferromagnetic matrix is obtained. Since the elliptic inclusion problem can cover a

wide variety of particular cases, the solution provided in this paper is useful and general in the application

of plane magnetoelasticity. The results of some special examples, such as elliptic hole, elliptic rigid inclusion

and air matrix, are also given and analytically compared with the existing solutions. Besides, the stress

intensity factors for a line crack and the stress singularity coefficients for a rigid line inclusion are also

expressed in terms of material and geometric data explicitly. Distributions of the magnetoelastic stresses on

the interface around the circumference of the inclusion are displayed in graphic form to illustrate the effect
of the relevant parameters.
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